Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
RSC Adv ; 14(8): 4990-5000, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38332798

RESUMEN

This work details the synthesis of paramagnetic upconversion nanoparticles doped with Fe3+ in various morphologies via the thermal decomposition method, followed by comprehensive characterization of their structures, optical properties and magnetism using diverse analytical techniques. Our findings demonstrate that by precisely modulating the ratio of oleic acid to octadecene in the solvent, one can successfully obtain hexagonal nanodiscs with a consistent and well-defined morphology. Further adjustments in the oleic acid to octadecene ratio, coupled with fine-tuning of the Na+/F- ratio, led to the production of small-sized nanorods with uniform morphology. Significantly, all Fe3+-doped nanoparticles displayed pronounced paramagnetism, with magnetic susceptibility measurements at 1 T and room temperature of 0.15 emu g-1 and 0.14 emu g-1 for the nanodiscs and nanorods, respectively. To further enhance their magnetic properties, we replaced the Y-matrix with a Gd-matrix, and by fine-tuning the oleic acid/octadecene and Na+/F- ratios, we achieved nanoparticles with uniform morphology. The magnetic susceptibility was 0.82 emu g-1 at 1 T and room temperature. Simultaneously, we could control the nanoparticle size by altering the synthesis temperature. These upconversion nanostructures, characterized by both paramagnetic properties and regular morphology, represent promising dual-mode nanoprobe candidates for optical biological imaging and magnetic resonance imaging.

2.
RSC Adv ; 13(37): 25877-25887, 2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37664215

RESUMEN

How to efficiently treat municipal solid waste (MSW) has become one of the critical solutions in response to the call for "carbon neutrality". Here, the waste polypropylene nonwoven fabric of waste diapers was converted into hierarchical nanoporous biochar (HPBC) through pre-carbonization and activation processes as an ideal precursor for supercapacitors (SCs) with excellent performance. The prepared HPBC-750-4 with an ultrahigh specific surface area (3838.04 m2 g-1) and abundant heteroatomic oxygen (13.25%) and nitrogen (1.16%) codoped porous biochar structure. Given its structural advantages, HPBC-750-4 achieved a specific capacitance of 340.9 F g-1 at a current density of 1 A g-1 in a three-electrode system. Its capacitance retention rate was above 99.2% after 10 000 cycles at a current density of 10 A g-1, which indicated an excellent rate capability and long-term cycling stability. Furthermore, the HPBC-750-4//HPBC-750-4 symmetric SC exhibited a superb energy density of 10.02 W h kg-1 with a power density of 96.15 W kg-1 in a 6 M KOH electrolyte. This work not only demonstrates the enormous potential of waste polypropylene nonwoven fabric in the SC industry but also provides an economically feasible means of managing MSW.

3.
Nanomaterials (Basel) ; 13(17)2023 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-37686939

RESUMEN

Sustainable and high-performance energy storage materials are crucial to address global energy and environmental challenges. In this study, Spirulina platensis was used as the carbon and nitrogen source, and Spirulina-based nanoporous biochar (SNPB) was synthesized through chemical activation using KOH as the activating agent in N2 atmosphere. SNPB-800-4 was characterized by N2 adsorption-desorption and XPS, showing a high specific surface area (2923.7 m2 g-1) and abundant heteroatomic oxygen (13.78%) and nitrogen (2.55%). SNPB-800-4 demonstrated an exceptional capacitance of 348 F g-1 at a current density of 1 A g-1 and a remarkable capacitance retention of 94.14% after 10,000 cycles at a current density of 10 A g-1 in 6 M KOH. Notably, symmetric supercapacitors SNPB-800-4//SNPB-800-4 achieved the maximum energy and power densities of 17.99 Wh kg-1 and 162.48 W kg-1, respectively, at a current density of 0.5 A g-1, and still maintained 2.66 Wh kg-1 when the power density was increased to 9685.08 W kg-1 at a current density of 30 A g-1. This work provides an easily scalable and straightforward way to convert waste algae biomass into in situ N, O-dually doped biochar for ultra-high-power supercapacitors.

4.
Molecules ; 28(18)2023 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-37764320

RESUMEN

The conversion of nitrogen-oxygen-rich biomass wastes into heteroatomic co-doped nanostructured carbons used as energy storage materials has received widespread attention. In this study, an in situ nitrogen-oxygen co-doped porous carbon was prepared for supercapacitor applications via a two-step method of pre-carbonization and pyrolytic activation using mixed egg yolk/white and rice waste. The optimal sample (YPAC-1) was found to have a 3D honeycomb structure composed of abundant micropores and mesopores with a high specific surface area of 1572.1 m2 g-1, which provided abundant storage space and a wide transport path for electrolyte ions. Notably, the specific capacitance of the constructed three-electrode system was as high as 446.22 F g-1 at a current density of 1 A g-1 and remained above 50% at 10 A g-1. The capacitance retention was 82.26% after up to 10,000 cycles. The symmetrical capacitor based on YPAC-1 with a two-electrode structure exhibited an energy density of 8.3 Wh kg-1 when the power density was 136 W kg-1. These results indicate that porous carbon materials prepared from mixed protein and carbohydrate waste have promising applications in the field of supercapacitors.

5.
RSC Adv ; 13(34): 24140-24149, 2023 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-37577085

RESUMEN

With the widespread use of antibiotics, the safe utilization of waste antibiotic fermentation residues has become an urgent issue to be resolved. In this study, in situ N, O co-doped porous carbon was prepared using fresh oxytetracycline fermentation residue under the mild activation of the green activator K2CO3. The optimal sample exhibited a 3D grid carbon skeleton structure, excellent specific surface area (SBET = 948 m2 g-1), and high nitrogen and oxygen content (N = 3.42 wt%, O = 14.86 wt%). Benefiting from its developed morphology, this sample demonstrated excellent electrochemical performance with a high specific capacitance of 310 F g-1 at a current density of 0.5 A g-1 in the three-electrode system. Moreover, it exhibited superior cycling stability with only a 5.32% loss of capacity after 10 000 cycles in 6 M KOH aqueous electrolyte. Furthermore, the symmetric supercapacitor prepared from it exhibited a maximum energy density of 7.2 W h kg-1 at a power density of 124.9 W kg-1, demonstrating its promising application prospects. This study provided a green and facile process for the sustainable and harmless treatment of antibiotic fermentation residues.

6.
J Am Chem Soc ; 145(32): 17621-17631, 2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37549032

RESUMEN

Lanthanide upconversion nanoparticles (UCNPs) have been extensively explored as biomarkers, energy transducers, and information carriers in wide-ranging applications in areas from healthcare and energy to information technology. In promoting the brightness and enriching the functionalities of UCNPs, core-shell structural engineering has been well-established as an important approach. Despite its importance, a strong limiting issue has been identified, namely, cation intermixing in the interfacial region of the synthesized core-shell nanoparticles. Currently, there still exists confusion regarding this destructive phenomenon and there is a lack of facile means to reach a delicate control of it. By means of a new set of experiments, we identify and provide in this work a comprehensive picture for the major physical mechanism of cation intermixing occurring in synthesis of core-shell UCNPs, i.e., partial or substantial core nanoparticle dissolution followed by epitaxial growth of the outer layer and ripening of the entire particle. Based on this picture, we provide an easy but effective approach to tackle this issue that enables us to produce UCNPs with highly boosted optical properties.

7.
Angew Chem Int Ed Engl ; 62(23): e202302753, 2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37026187

RESUMEN

We report a new strategy to fabricate a multifunctional composite photoanode containing TiO2 hollow spheres (TiO2 -HSs), Au nanoparticles (AuNPs) and novel NaYF4 : Yb,Er@NaLuF4 : Eu@SiO2 upconversion nanoparticles (UCNPs). The AuNPs are grown on the photoanode film including TiO2 -HSs and UCNPs by a simple in situ plasmonic treatment. As a result, an impressive power conversion efficiency of 14.13 % is obtained, which is a record for N719 dye-based dye-sensitized solar cells, demonstrating great potential for the solar cells toward commercialization. This obvious enhancement is ascribed to a collaborative mechanism of the TiO2 -HSs exhibiting excellent light-scattering ability, of the UCNPs converting near-infrared photons into visible photons and of the AuNPs presenting outstanding surface plasmon resonance effect. Notably, a steady-state experiment further reveals that the champion cell exhibits 95.33 % retainment in efficiency even after 180 h of measurements, showing good device stability.

8.
ACS Omega ; 8(9): 8219-8226, 2023 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-36910949

RESUMEN

Hydrothermal liquefaction (HTL) is one of the most promising technologies for biofuel production. The preparation and application of catalysts for HTL have been the research focus in recent years. In this study, a new synergistic catalytic process strategy is proposed. CuO-CeO2/γ-Al2O3 was used as an in situ hydrogen donor catalyst and Ni-Co/SAPO-34 was synthesized for hydroprocessing to improve bio-oil production process. The results of XRD and XPS demonstrated that the metal components were well supported on the catalyst. When the two catalysts were mixed, the yield of bio-oil increased from 51.00% to 64.51%, the carbon recovery rate raised from 69.53% to 88.18%, the energy recovery rate grew from 63.42% to 80.22%, and the S content is relatively reduced by 83.3%. Also, TG analysis showed that the content of light components in bio-oil increased. Moreover, the hydrocarbons and alcohols were observed to a higher proportion from the GC-MS analysis. This new method still has high catalytic activity after repeated use for five times. This study provides a new idea for preparing higher yield and superior quality bio-oil.

9.
Adv Sci (Weinh) ; 10(11): e2205639, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36793146

RESUMEN

Developing metal-nitrogen-carbon (M-N-C)-based single-atom electrocatalysts for carbon dioxide reduction reaction (CO2 RR) have captured widespread interest because of their outstanding activity and selectivity. Yet, the loss of nitrogen sources during the synthetic process hinders their further development. Herein, an effective strategy using 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM][BF4 ]) as a liquid nitrogen source to construct a nickel single-atom electrocatalyst (Ni-SA) with well-defined Ni-N4 sites on a carbon support (denoted as Ni-SA-BB/C) is reported. This is shown to deliver a carbon monoxide faradaic efficiency of >95% over a potential of -0.7 to -1.1 V (vs reversible hydrogen electrode) with excellent durability. Furthermore, the obtained Ni-SA-BB/C catalyst possesses higher nitrogen content than the Ni-SA catalyst prepared by conventional nitrogen sources. Importantly, only thimbleful Ni nanoparticles (Ni-NP) are contained in the large-scale-prepared Ni-SA-BB/C catalyst without acid leaching, and with only a slight decrease in the catalytic activity. Density functional theory calculations indicate a salient difference between Ni-SA and Ni-NP in the catalytic performance toward CO2 RR. This work introduces a simple and amenable manufacturing strategy to large-scale fabrication of nickel single-atom electrocatalysts for CO2 -to-CO conversion.

10.
Inorg Chem ; 61(44): 17438-17447, 2022 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-36279176

RESUMEN

Considerable attention has been focused on the development of catalysts for the coupling reaction of carbon dioxide (CO2) and epoxides due to the distinct advantages and importance of this reaction. To develop high-performance and easy-to-recycle catalyst is still a hot topic, especially for candidates with excellent activity under moderate conditions. A new heterogeneous catalyst, MIL-101-ImEtOH, is reported by post-synthesis modification, in which 2-(1-imidazol-1-yl) ethanol (Im-EtOH) is immobilized on MIL-101(Cr). In the absence of solvent and co-catalyst, MIL-101-ImEtOH exhibits high activity for the cycloaddition of CO2 and styrene oxide. A 95.6% yield is achieved under 0.5 MPa CO2 pressure and 90 °C by utilization of 50 mg of catalyst for 3 h. Moreover, MIL-101-ImEtOH is easily separated from the catalytic system by simple filtration. To elucidate the influence of hydroxyl group and porous structure on catalysis, other two supported ionic liquids, MIL-101-EtIm and PS-ImEtOH, are prepared and used to catalyze the title reaction under the same conditions. The contribution of each active component is determined by density functional theory along with noncovalent interaction analysis.

11.
RSC Adv ; 12(31): 20379-20386, 2022 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-35919607

RESUMEN

Hydrothermal co-liquefaction has the potential to improve biocrude yield. To investigate the influence of various types of biomass on co-liquefaction with municipal sewage sludge (MSS), experiments on MSS with three kinds of model feedstocks (soy oil, soy protein, and starch) were carried out. Reaction temperatures of 300, 320, and 340 °C proved to be the appropriate reaction temperatures for the highest biocrude yield for soy oil, soy protein, and starch, respectively. A synergistic effect on the biocrude yield of co-liquefaction was proved, and starch showed the highest synergistic effect with a 57.25% increase in biocrude yield, while soy oil only presented a slight synergistic effect. Thermal gravimetric analysis (TGA) results suggested that co-liquefaction with soy oil increased the light oil fractions in biocrude by 20.81%, but protein and starch led to more heavy oil fractions. Gas chromatography-mass spectrometry (GC-MS) indicated that co-liquefaction with protein or starch produced more cyclic compounds in the biocrude, while almost no new components appeared from co-liquefaction with soy oil.

12.
Adv Sci (Weinh) ; 9(18): e2200067, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35466577

RESUMEN

Magnesium (Mg)-ion batteries with low cost and good safety characteristics has attracted a great deal of attention recently. However, the high polarity and the slow diffusion of Mg2+ in the cathode material limit the development of practical Mg cathode materials. In this paper, an anion-rich electrode material, NiS2 , and its composite with Ni-based carbon nanotubes (NiS2 /NCNTs) are explored as the cathode materials for Mg-ion batteries. These NiS2 /NCNTs with excellent Mg2+ storage property is synthesized by a simple in situ growth of NiS2 nanoparticles on NCNTs. NiS2 with both a large regular cavity structure and abundant sulfur-sulfur (SS) bonds with high electronegativity can provide a large number of active sites and unobstructed transport paths for the insertion-disinsertion of Mg2+ . With the aid of 3D NCNTs skeleton as the transport channel of the electron, the NiS2 /NCNTs exhibit a high capacity of 244.5 mAh g-1 at 50 mA g-1 and an outstanding rate performance (94.7 mAh g-1 at 1000 mA g-1 ). It achieves capacitance retention of 58% after 2000 cycles at 200 mA g-1 . Through theoretical density functional theory (DFT) calculations and a series of systematic ex situ characterizations, the magnesiation/demagnesiation mechanisms of NiS2 and NiS2 /NCNTs and are elucidated for fundamental understanding.

13.
Inorg Chem ; 61(16): 6073-6082, 2022 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-35412819

RESUMEN

Doping heteroatoms in carbon materials is a promising method to prepare the robust electrocatalysts for the carbon dioxide reduction reaction (CO2RR), which is beneficial for sustainable energy storage and environmental remediation. However, the obscure recognition of active sites is the obstacle for further development of high-efficiency electrocatalysts, especially for the N,P-codoped carbon materials. Herein, a series of N,P-codoped carbon materials (CNP) is prepared with different N and P contents to explore the relationship between the N/P configuration and the CO2RR activity. As compared with the N-doped carbon materials, the additional P doping is helpful to improve the activity. The optimum N,P-codoped carbon materials (CNP-900) achieve 80.8% CO Faradaic efficiency (FECO) at a mild overpotential of 0.44 V. On the basis of the X-ray photoelectron spectroscopy results, the suitable ratio between pyridinic N and graphitic N and the least P-N content are beneficial for CO2RR. The density functional theory calculations further illustrate that two elementary steps to form *COOH and *CO in CO2RR are determined by the graphitic N and pyridinic N configurations, respectively. The existence of the P-N configuration breaks the equilibrium between graphitic N and pyridinic N to suppress the activity.

14.
J Phys Chem A ; 126(16): 2445-2452, 2022 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-35420813

RESUMEN

Cyclo[n]carbons (n = 5, 7, 9, ..., 29) composed from an odd number of carbon atoms are studied computationally at density functional theory (DFT) and ab initio complete active space self-consistent field (CASSCF) levels of theory to get insight into their electronic structure and aromaticity. DFT calculations predict a strongly delocalized carbene structure of the cyclo[n]carbons and an aromatic character for all of them. In contrast, calculations at the CASSCF level yield geometrically bent and electronically localized carbene structures leading to an alternating double aromaticity of the odd-number cyclo[n]carbons. CASSCF calculations yield a singlet electronic ground state for the studied cyclo[n]carbons except for C25, whereas at the DFT level the energy difference between the lowest singlet and triplet states depends on the employed functional. The BHandHLYP functional predicts a triplet ground state of the larger odd-number cyclo[n]carbons starting from n = 13. Current-density calculations at the BHandHLYP level using the CASSCF-optimized molecular structures show that there is a through-space delocalization in the cyclo[n]carbons. The current density avoids the carbene carbon atom, leading to an alternating double aromaticity of the odd-number cyclo[n]carbons satisfying the antiaromatic [4k+1] and aromatic [4k+3] rules. C11, C15, and C19 are aromatic and can be prioritized in future synthesis. We predict a bond-shift phenomenon for the triplet state of the cyclo[n]carbons leading to resonance structures that have different reactivity toward dimerization.

15.
Artículo en Inglés | MEDLINE | ID: mdl-32668694

RESUMEN

During the flood season, various regions in a watershed often have flood drainage conflicts, when the regions compete for flood drainage rights (FDR). In order to solve this problem, it is very necessary to study the allocation of FDR among various regions in the watershed. Firstly, this paper takes fairness, efficiency and sustainable development as the allocation principles, and comprehensively considers the differences of natural factors, social development factors, economic development factors and ecological environment factors in various regions. Then, an indicator system for allocation of FDR among regions in the watershed is established. Secondly, an entropy weight Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) model is used to construct the FDR allocation model among regions in the watershed. Based on a harmony evaluation model, a harmony evaluation and comparison are carried out on the FDR allocation schemes under three different allocation principles. Finally, taking the Jiangsu section of the Huaihe River watershed as an example, the FDR of eight cities in the watershed are allocated and evaluated to see if the allocation scheme is harmonious. The results show that the allocation scheme of FDR based on the principles of fairness, efficiency and sustainable development has the highest degree of harmony, which can meet the FDR demands in various regions in the watershed, avoid the occurrence of flood drainage conflicts among regions, form an orderly flood drainage situation and promote the harmonious development of the watershed.


Asunto(s)
Inundaciones , Asignación de Recursos , Ríos , China , Ciudades , Entropía
16.
Spectrochim Acta A Mol Biomol Spectrosc ; 226: 117564, 2020 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-31614274

RESUMEN

The development of efficient deep-blue thermally activated delayed fluorescence (TADF) materials is especially important for organic light-emitting devices as displays and lighting sources. However, finding suitable deep-blue TADF emitters is still challenging. Based on an experimentally reported blue-light TADF emitter DCZ-TTR, two new molecules (DCZ1-TTR and DCZ2-TTR) have been designed to investigate the impact of the change of relative position in two carbazole groups on their TADF properties. Density functional theory (DFT) and time-dependent density functional theory (TD-DFT) calculations coupled with the Marcus rate theory have been performed. It is found that the absorption and emission spectra simulated using the BMK functional can reproduce the available experimental data very well. The fluorescence emissions of DCZ1-TTR and DCZ2-TTR are predicted to show clear blue-shifting in cyclohexane with respect to their analogue DCZ-TTR. Especially, the emission wavelength of DCZ2-TTR is calculated to be 435nm, in the deep-blue light range. According to the Marcus rate theory, the rates of reverse intersystem crossing of DCZ1-TTR and DCZ2-TTR are estimated to be two orders of magnitude larger than that of DCZ-TTR, which is more favorable for the occurrence of delayed fluorescence. This strongly suggests that our newly designed two molecules DCZ1-TTR and DCZ2-TTR can be also expected to be potential blue-light or even deep-blue-light TADF emitters. This may be an effective strategy for realizing deep-blue emission by simply varying relative position of two carbazole groups in the TADF molecules. To our best knowledge, this is a novel finding, which may be useful in preparing highly efficient deep-blue TADF-OLED materials.

17.
Spectrochim Acta A Mol Biomol Spectrosc ; 228: 117808, 2020 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-31767419

RESUMEN

Three new organic hole transport materials (HTMs), 2, 3 and 4, are designed with NP-core along with bis(4-methoxyphenyl)amine, p-methoxytriphenylamine, and 9-p-tolyl-9H-carbazole as side group on the basis of reported HTM NP2 (1), respectively. For isolated molecules, frontier molecular orbitals, absorption and emission spectra, and hole mobility are evaluated by density functional theory (DFT) and molecular dynamics simulations. In addition, the following properties, hydrophobility, solubility, and glass transition temperatures (Tg), related with the overall performance of devices are also calculated. The HTM@CH3NH3PbI3 adsorbed system is investigated to consider the effect of interfacial properties between HTM and CH3NH3PbI3 on HTM properties. Our theoretical results indicate that the new designed molecule 4 has better properties than 1. More importantly, 1 has been fabricated in perovskite solar cells (PSCs) as a HTM with the power conversion efficiency of 16.4%. It is reasonable to infer that the new designed molecules would be potential candidates.

18.
Inorg Chem ; 58(19): 12618-12627, 2019 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-31490063

RESUMEN

The aim of this paper is to design near-infrared (NIR) Al3+ fluorescent probes based on a Schiff base to extend their applications in biological systems. By combining benzo[h]quinoline unit and salicylaldehyde acylhydrazone, we designed two new Schiff base derivatives. According to theoretical simulations on previous experimental Al3+ probes, we obtained the appropriate theoretical approaches to describe the properties of these fluorescent probes. By employing such approaches on our newly designed molecules, it is found that the new molecules have high selectivity toward Al3+ and that their corresponding Al3+ complexes can emit NIR fluorescence. As a result, they are expected to be potential NIR Al3+ fluorescent probes.


Asunto(s)
Aldehídos/química , Aluminio/análisis , Colorantes Fluorescentes/química , Hidrazonas/química , Cationes/análisis , Modelos Moleculares , Bases de Schiff/química , Espectrometría de Fluorescencia
19.
Phys Chem Chem Phys ; 21(24): 12905-12915, 2019 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-31157353

RESUMEN

Suppressors of cytokine signaling (SOCS) act as negative feedback regulators of the Janus kinase/signal transducer (JAK-STAT) signaling pathway by inhibiting the activity of JAK kinase. The kinase inhibitory region (KIR) of SOCS1 targets the substrate binding groove of JAK with high specificity, as demonstrated by significantly higher IC50 following the mutation of any of residue. To gain a greater understanding of the mechanisms of the inhibition of SOCS1 for JAK1, the binding mode, binding free energy decomposition, and desorption mechanism of JAK-SOCS1 complexes as well as a number of mutant systems were identified by extensive molecular dynamics (MD) simulations and the constant pulling velocity (PCV) method. Electrostatic interactions were identified for their contribution to protein-protein binding, which drove interactions between JAK1 and SOCS1. The polar residues Arg56, Arg59, and Asp105 of SOCS1 and Asp1042 and Asp1040 of JAK1 were key components in the binding, and electrostatic interactions of the side chains were prominent. The binding free energies of the six mutant proteins were lower when compared with those of the control proteins, and the side chain interactions were weakened. The residue Asp1040 played a crucial role in KIR close to the binding groove of JAK1. Moreover, salt bridges contributed significantly to JAK1 and SOCS1 binding and cleavage processes. The study presented herein provides a comprehensive understanding of the thermodynamic and dynamic processes of SOCS1 and JAK1 binding that will contribute meaningfully to the design of future studies related to peptide inhibitors based on SOCS1.


Asunto(s)
Citocinas/metabolismo , Janus Quinasa 1/antagonistas & inhibidores , Inhibidores de las Cinasas Janus/química , Proteínas Supresoras de la Señalización de Citocinas/química , Humanos , Cinética , Simulación de Dinámica Molecular , Mutación , Unión Proteica , Conformación Proteica , Proteínas Supresoras de la Señalización de Citocinas/genética , Termodinámica
20.
Spectrochim Acta A Mol Biomol Spectrosc ; 221: 117167, 2019 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-31170604

RESUMEN

It is an easy task to simulate the spectrum properties for the organic dyes applied in dye-sensitized solar cells (DSSCs) if the suitable method is chosen. However, it is still difficult to quantitatively determine the overall performance for them. In this work, the short-circuit photocurrent density (JSC) and open circuit photovoltage (VOC) are quantitatively calculated by combination of the density functional theory and first principle for DSSCs based on four different organic dyes, 2-((4'-((4-(bis(4-methoxyphenyl)amino)phenyl)diazenyl)biphenyl-4-yl)methylene)but-3-ynoic acid (1), 2-((5-(4-((4-(bis(4-methoxyphenyl)amino)phenyl)diazenyl)phenyl)thiophen-2-yl)methylene)but-3-ynoic acid (2), 3-(7-(4-((4-(bis(4-methoxyphenyl)amino)phenyl)diazenyl)-4H-cyclopenta[2,1-b:3,4-b']-dithiophene)-2-cyanoacrylic acid (3), and 3-(7-(4-((4-(bis(4-methoxyphenyl)amino)phenyl)diazenyl)phenyl)-2,3-dihydrothieno[3,4-b][1,4]dioxin-5-yl)-2-cyanoacrylic acid (4), in which the triarylamine is donor and the cyanoacrylic acid is acceptor along with variable π group. The 3 and 4 are new theoretically designed organic dyes on the basis of 1 and 2 with different electron-rich group as π group. Both JSC and VOC of 3 and 4 are improved as compared with those of 1 and 2, which breaks the normal "trade-off" rule. As a result, the power conversion efficiency (PCE) of 3 and 4 is improved, especially for 3. The aggregation effect is also considered to evaluate the overall performance, which is favorable to further enhance the reliability of theoretical design.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...